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Generalized Logarithmic Error and 
Newton's Method for the mth Root * 

By David L. Phillips 

Abstract. The problem of obtaining optimal starting values for the calculation of integer roots 
using Newton's method is considered. It has been shown elsewhere that if relative error is used 
as the measure of goodness of fit, then optimal results are not obtained when the initial approxi- 
mation is a best fit. Furthermore, if the so-called logarithmic error instead of the relative error 
is used in the square root case, then a best initial fit is optimal for both errors It is shown here 
that tor each positive integer m, m > 3, and each negative integer m, there is a certain gen- 
eralized logarithmic error for which a best initial fit to the mth root is optimal. It is then shown 
that an optimal fit can be found by just multiplying a best relative error fit by a certain constant. 
Also, explicit formulas are found for the optimal initial linear fit. 

Introduction. The logarithmic error 3 is defined as 3 = ln( 1 ? 3), where 3 is the 
relative error. In [1] it is shown that if the logarithmic error is used instead of the 
relative error, then an initial fit to the square root that minimizes the maximum 

logarithmic error also minimizes the maximum logarithmic error after one or more 
Newton iterations. Furthermore, this best initial fit minimizes the maximum relative 
error after one or more Newton iterations. It is also noted that this nice property of 
the logarithmic error does not hold for mnth roots, in = 3, 4, 5 ..., and in = - 1, 
-2, .... The reason that negative values of m are included here is that for negative m 
the Newton iteration involves only multiplication and subtraction. For machines 
with very slow division time, for example ILLIAC IV, it might be faster to compute 
1/x as x and xliI as x(x- ilm)m . It is the purpose of this note to show that for a 
certain generalized logarithmic error a best initial fit to the mth root minimizes the 
maximum relative error as well as the generalized logarithmic error after one or more 
Newton iterations. It will also be shown that a best generalized logarithmic fit can 
be obtained by simply multiplying a best relative fit by a certain constant. 

Generalized Errors and Optimal Initial Fits. We will use the notation 3 for the 
relative error and 3 for another error that can be written as ) = f(6). Let yo be an 
initial approximation to the mth root of x and yn be the nth Newton iterate. Then if 
6n is the relative error after n Newton iterations, 

n 
- 

mm (n 0, 1, 2- )[ 
x 

n 
=I 1,,., Yn+ 1 - - l)Yn ? 

- j, 
and 

(1) 35n+l = I -- [(mi - 1)(1 + 3n) + (I + 3)iY ] - 1 - (3n). 
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From (1) it follows that 6 is not an even (or odd) function of 60 (except form = - 1). 
This in turn implies that a best initial fit does not in general lead to a best fit after 
n > 1 Newton iterations. This is because initial errors with equal magnitude but 
opposite sign will not lead to errors of equal magnitude after one or more Newton 
iterations. However, if we can find an error 3 = f(6) such that 6,, 1 is an even func- 
tion of ,,, then initial errors of equal magnitude will lead to errors of equal magnitude 
after one or more Newton iterations. It will be shown in Theorem 1 below that if in 
addition f(6) is monotone increasing and f(0) = 0, then a best initial fit yields best 
iterated fits after any number of Newton iterations. 

A best fit over a given range, say [a, b], is understood to be an approximating 
function (of a certain form) with an error curve which minimizes the maximum mag- 
nitude of the error. An initial fit will be called optimal if all of its Newton iterates are 
best fits. It has been shown in [2] (also [1]) that for the relative error an initial fit to 
XlI/m which has the property that its first Newton iterate is a best fit is optimal. 

We now prove the following: 
THEOREM 1. Let 3 be an error related to the relative error 6 by the expression 6 = 

where f is a continuous monotone increasing function with f(0) = 0. Further, let 3 
have the property that 3,+ 1 is an even function of 3,. Then a best initial fit to the mth 
root using 3 is optimal for both errors, 3 and 6. 

Proof. We will assume for convenience that m > 2. The case m < - 1 is treated 
similarly. 

We will first show that 6, and 6,,, n = 1, 2, ... are nonnegative even functions of 
30, monotone increasing for So > 0. It follows from (1) that 

n = f(6n+ 1) = f(g(6)) = f(g(f -1(,3j))) F(3n)9 

where F is an even function of n,, f - ', the inverse function of f, is monotone increas- 
ing, and f '(0) = 0. Further, it follows from (1) that g(0) = 0 and that 

06"n) = db, m= [1 -(1 + bj)] < O for-1 < 6,, < 0 

> 0 for 6,, > . 

Thus, g is monotone decreasing for 6, < 0 and monotone increasing for 6, > 0; 
consequently g _ 0. It now readily follows that F(z) is monotone increasing for 
z _ 0, and that F(O) = 0. Introducing the notation 

F,(z) _ F(z), F2(z) F(F(z)),.... 

and Gj(z) _ f - '(Fj(z)), we see that the Fj(z) and Gj(z) are nonnegative even func- 
tions, monotone increasing for z > 0 and that 

6,, = F,,(60), 6,, = f '(36,) = GJ(60), n = 1, 2, .... 

We next show that maximal initial 3 errors give maximal iterated 3 errors. Let 
yo be an initial approximation and o0M be a maximal initial 3 error, i.e., I30MI = 

maxxe[ab) 130(x)I. If 3nM is a maximal 3 error after n iterations, 

6nM = max F,(60(x)) = max F,(130(x)I) = F,, (max 130(x)l 
xE[a,b] xe[a,b] \xe[ab) 

= F1(130Ml) = F(60M). 
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Now let y' be another initial fit with maximal initial error 30M and maximal 3 
error after n iterations SnM. Then SnM = F,(30M) If 6OMI < I6OMI, it follows that 

nm= FnA(oM) = Fn(130jM|) < Fl(16OMI) = Fn(60M) = SW, 

i.e., the better initial approximation gives the better approximation after n iterations. 
Thus a best initial 3 fit yo gives best iterated fits Yn , 

A similar argument with bn replacing 3n (n = 1, 2,...) and Gn replacing F, shows 
that each iterate Yn of a best initial 3 fit yo is a best 6 fit. This completes the proof of 
the theorem. 

COROLLARY 1. A best initial fit to 1/x using the relative error is optimal. 
Proof. In this case (m = -1) it follows from (1) that 6,+ = -62 . Thus we simply 

let 3 = 6 in the theorem. 

Generalized Logarithmic Error. We now seek an error ) = 1(6) satisfying the 
conditions of Theorem 1. In particular we are looking for an error 6 = f(b) such 
that 3n+ 1 = f(n + 1) is an even function of 3n (as it turns out we find f implicitly 
through the inverse function f - 1). As in Theorem 1, we can write 6n+ 1 as 

n+ 1 = f(n + 1) = f(g(6n)) = f(g(f (3n))) F(n) 

Notice that F(3n) will be an even function of3, if g(f '(6,)) is an even function of 3, 
i.e., if 

-m - 1)(1 + f -(3n)) + (1 + f -(3n)) ]-m 

-M[(i - 1)(1 + f (-,3n)) + (1 + f 1(_3n))1 

or 

(m - 1)[1 + f 1(3n) - (1 + f 1(- 3n))l 

(2) = (1 + f - 
1(-3,))1 

m - 
(1 + f - l -m 

In order to find a function f such that (2) is satisfied, we find it convenient to put 

(3) 1 + f (6n) = exp[r(3n) + S(SX)], 

where r is an arbitrary even function and s is an arbitrary odd function. Substituting 
(3) into (2) we get 

(m - 1)er(es - e5) er(l -m)(e(m- 1)s - e-(m- 1)s 

or 

emr = sinh(m- 1)s/((m - 1)sinh s). 

Then, since bn = f - '(n), 

(1 + 6n)m = emrems = ems sinh(m- 1)s/((m - 1)sinh s), 

with s(3n) an arbitrary odd function. Thus there are an infinite number of solutions. 
An obvious choice for s is the simplest of all odd functions, S = 6n,. We now define 
the error 3 by means of the equation 
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(1 + 5)r = em3 sinh(m - 1)/((m- 1)sinh 3), 
or 

=f (3) = (sinh(m - 1)3 1/ 

m- I - 

j~~~je 
m- 1)sin-h'6, 

(4) =(~~~~e2(m )5 + e2m -2)5+..+e2)1I1 m>O 

(e2mb + e2(m+ 1) +... + 1)1/m 
= l -~~~~~19 m < O. 

Equation (4) implicitly defines 3 = f(b) and shows that f is a monotone increasing 
function and that f (O) = 0. For m = 2, 3 = f (6) reduces to the logarithmic error. 
Thus we will call 3 = f (6) the generalized logarithmic error. Notice that for small 
3 we have 3 - ln(1 + 6) - 6 so that the relative, logarithmic, and generalized 
logarithmic errors are essentially the same for sufficiently small 6. For m = 3 we 
can easily express 3 in terms of 6. The result in this case is 

3 = 2 ln[((1 + 8(1 + 6)3)1/2 - 1)/2]. 

The generalized logarithmic error satisfies the conditions of Theorem 1. We thus 
have the following: 

COROLLARY 2. A best initial fit to the mth root using the generalized logarithmic 
error is optimal for both the generalized logarithmic and relative errors. 

Best Fits Using Errors of the Form 6 = f(b). When f(6) is a continuous monotone 
increasing function with f(O) = 0, best fits using the error 3 = f(6) are related to 
best fits using the relative error in a simple way. To be more precise we have the 
following: 

THEOREM 2. Let F(x) be a bounded continuous function for which either F(x) > 0 
or F(x) < 0 holds in [a, b], and F be a class of bounded continuous functions such 
that for real k, kz(x) e Y whenever z e F. Let y e Y be a best fit to F(x) using the 
relative error 6. Further, let a = maxxE[a b] 6(x) be the maximum relative error of y. 
Then cy(x) is a best fit to F(x) for the error 6 = f(6), where c > 0 is the constant 
satisfying the equation 

f(c(1 + a) - 1) = -f(c(1 - a) - 1), 
and f is a continuous monotone increasing function with .f(0) = 0. 

Proof. First we introduce the notation 6Z and 6Z to denote the relative and 6 errors, 
respectively, of the approximation z(x). It follows from the definition of relative error 
that for any constant k, 

6kz = k(1 + 6Z) - 1. 
It easily follows that for a best fit, y, using the relative error, 

-min by = max by a. 
xe[a,b] xe[a,b] 

For otherwise (1 - c)y(x), for sufficiently small c of the appropriate sign, would give 
a better fit. 
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Now assume that for the 3 error there exists a better fit, g(x), to F(x) than cy(x). 
Since f is monotone increasing we have 

max f(bcy) = f (maxc) = f (c (1 + max by) - I) 

= f(c(1 + a) - 1), 

and similarly 

min f('c,) = f(c(1- a) - 1). 
x 

But f (c(1 + a) - 1) = -f (c(1 - a) - 1) so that 

f(c(1 - a) - 1) = min f(6cy) < S_ f(6g) < max f(bcy) = f(c(1 + a) - 1). 
x x 

It then follows that 

c(l -a)- 1 < 69 < c(l + a)- 1, or -a <-( + 6) I 6c <a 

which contradicts y being a best fit to F(x) for the relative error. Hence the assumption 
that there exists a better fit than cy(x) to F(x) for the 3 error has led to a contradiction. 

COROLLARY 3. For the generalized logarithmic error 

C (1 -a2)1"2 

(5) + a)(m-2)/2 ( + a)(m3)/2 - a) (m-2)/2 /m 

(5) x (m -1) 

I/ + \(m 1) I1 + (T(m 
- 2) /1+ 1\ I 

I +v 9(m-1 ) 

Proof. Put 6 = f(c(l + a) - 1). Then -o = f(c(1- a) - 1), f'(6Fj = 
c(1 + a) - 1, and f- '(-6) = c(l - a) - 1. It follows from (4) that 

c(1 + a) -1 e (sinh(m- 1)&) 1, 

and 

c(1 -) 1 e (sinh(m - )i 1& -1, 

so that 

2_ 1 +I a 6 = ln(+a). 

Thus Thus 
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ea (sinh(m - 1)6 1/rn 

1 + a (m - 1)sinhdj 
1 + (m(- 1)/2 7(m-1)/2 1/nm 

(-2)1/29 (( + 1)"2 (1a 1/2) ' 

from which (5) follows. 
Combining the results of Theorem 2 and Corollaries 2 and 3 we can state the 

following: 
THEOREM 3. An optimal initial approximation to xl/m using either the generalized 

logarithm or relative eiror is obtained by multiplying a best initial approximation 
using the relative error by the constant c given by Eq. (5). 

Example. We now use the results of Theorem 3 to find the optimal linear fit 
yo = A + Bx to xl/m on the interval [a, b]. We first find the best initial fit, yO = 
A + Bx, for the relative error. It is easy to show that the best fit satisfies the conditions 

6(a) = 6(b) =-(x) 

where 

db(x) l = 

dx X=3 

Solving these equations is straightforward and yields 

_ ~~~~2a 1 m 
A = 2a1/r , B =kA, 

m 
(1 + ak) + i- (ak(m - 1))1//m 

where 

bllm - al/m 
(6) k balIm - abln/m 

Also we get 

Am ((m 1)k)l/r, 1 +a=A alrn 

Thus the optimal linear fit is yO = A + Bx where 

(7) A = (a/(m - 1))l/rnm ((1 + ak)(m - 1) m-i (1 + ak)(m- 1)1/r 

(1 + ak) kkm((m - 1)ak)l/m m((m - 1)ak)l/rnJm 

(8) B =kA. 

For m = 2 the fit reduces to 

(ab)"/2 _- x 

= (ab)' 8(2(V/a + Vb))'/2 

which agrees with the results already found in [1]. 
Table 1 gives the values of A and B for several values of m and typical intervals [a, b]. 
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TABLE 1 

A B 

m = 2 
[- 1] .3432945240 .6865890480 

m = 3 
[8, 1] .4541610792 .6055481056 

mn = 4 

[-, 1] .5083290509 .5809474868 

M=5 

[U, 1] .5411774362 .5772559320 

m= 6 
[64,1] .5644226063 .5826297871 

m = -1 
[2, 1] 2.823529412 -1.882352941 

m = - 2 
[4, 1] 2.130151160 - 1.217229234 

m = -3 
[8, 1] 1.898387403 - 1.012473282 

m = -4 
[11 1] 1.778282355 -.9178231511 

M=-5 

[E, 1] 1.700553087 -.8637729968 

Added in Proof When m = 2 Theorem 3 reduces to a result essentially the same 
as one given in a recent paper of Sterbenz and Fike [3]. Also, in a forthcoming 
paper [4] Taylor gives a different (and independent) proof that the optimal initial 
approximation to x1lm is a constant multiple of the best initial relative error approxi- 
mation. 
Argonne National Laboratory 
Argonne, Illinois 60439 
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